Intensified ovarian stimulation in a GnRH antagonist protocol with agonist triggering: A prospective, clinical feasibility study

G Griesinger et al. Reproductive BioMedicine Online 2011, 22 133–139

R3 孫怡虹 /VS 蔡永

木

Introduction

- Aim of ovarian stimulation for IVF: induce multifollicular growth → retrieval of multiple oocytes for extracorporal fertilization
- piscomfort & risk of adverse events
- Threat of severe OHSS, in young patients
 Jimited the feasibility of maximizing the oocyte yield / single treatment cycle

GnRH antagonist ovarian stimulation protocol + **agonist triggering**

Intensified ovarian stimulation
 Without 1 the likelihood of severe OHSS

 GnRH agonist (instead of hCG) bolus → Triggering of final oocyte maturation
 Pituitary remains responsive

 ✓ risk of moderate-to-severe OHSS

Cryopreserved all fertilized oocytes by **vitrification** for a later transfer

• GnRH agonist triggering in OHSS risk patients as a safe & efficacious option (Griesinger et al., 2007, 2010)

 Circumvents the impaired luteal phase after agonist triggering (Babayof et al., 2006; Humaidan et al., 2009; Nevo et al., 2003)

• Eliminates the risk of late-onset OHSS

Highly efficacious cryopreservation technique

 Had potential to allow temporally splitting ovarian stimulation and embryo transfer

 Without a significant loss of treatment efficacy This prospective clinical study ...

- Exploring the feasibility of such ovarian stimulation approach
 - Creating a maximally large number of fertilized oocytes from a single ovarian stimulation cycle
 - For later transfer in <u>repetitive</u> vitrified_ warmed cycles

 No previous experience → nonrandomized study → derive a first estimate of the tolerability, safety and efficacy

Questions:

- (i) Is an intensified ovarian stimulation protocol with agonist triggering safe in terms of OHSS occurrence?
- (ii) Is this approach **acceptable** to the patient in terms of discomfort?
- (iii) What is the **cumulative live birth rate** from **multiple vitrified-warmed embryo replacement** cycles per single oocyte retrieval?

Materials and methods

Patient population – Inclusion criteria

- (i) ≤ 36 y/o, indicated for IVF or ICSI (intracytoplasmic sperm injection)
- (ii) No expected or previous poor response
 (≥ 3 oocytes at retrieval)
- (iii) Both ovaries present
- (iv) No endometriosis American Fertility Society grade III–IV
- (v) neither uterine nor ovarian abnormality on transvaginal sonography
- (vi) informed consent

Study protocol

• D2 or 3 of MC(spontaneous or induced)

- Progesterone, oestradiol, LH (to confirm reference range values)
- → 225–375 IU r-FSH or human menopausal gonadotrophin (HMG) or combination → once daily s.c.

→(Chosen dose)Aim: inducing ≥20 follicles

→Expected normo-responders ≤36 y/o → 150 IU daily (non-intensified stimulation)

After 5–6 days FSH/HMG

- Start GnRH antagonist 0.25 mg daily s.c. → until the day of triggering final oocyte maturation
- D7 or 8 of stimulation → TVS, serum oestradiol, progesterone and LH → leading follicle 17–18 mm

oocyte retrieval

 0.2 mg GnRH agonist (triptorelin) bolus (single s.c. injection)

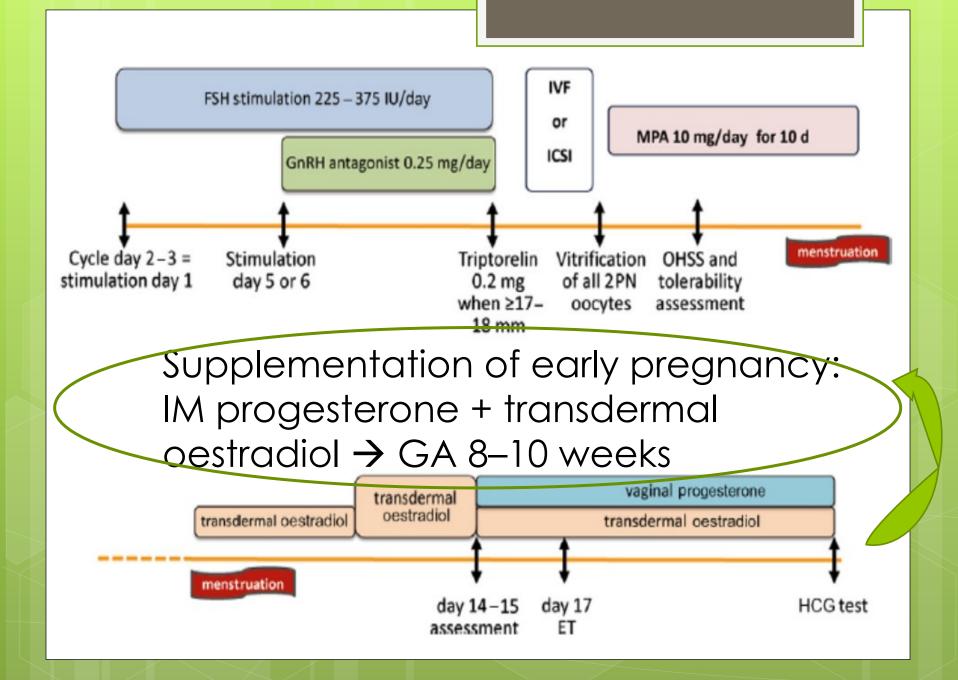
 Approximately 36 h later → IVF or ICSI

Endometrial transformation

- After agonist triggering
- →Medroxyprogesterone acetate (MPA) 10mg 10–14 days oral daily
- Oestradiol < 4000 pg/ml during stimulation
- >Low-molecular weight heparin (dalteparin 5000 IU/day) self-administered daily sc
- Continued until menstruation

Vitrification

• 20 h after IVF or ICSI
 • Oocytes at the 2 pronuclear (2PN) stage → vitrified


(Kuwayama et al., 2005)

Cryopreserved embryo transfer

- After spontaneous or induced menses (Bals-Pratsch et al., 1999)
- → Preparation of the endometrium:
 - 14 days x Transdermal oestradiol patches (Estraderm TTS 100, Novartis Pharma) Or Oral oestradiol (Progynova, Bayer Vital)
 - Since day 15 Add vaginal progesterone (Crinone 8%, Merck Serono or Utrogest, Kade/Besins)

Embryo transfer

 Day 3 of progesterone administration
 Day 2 of preimplantation development
 2PN oocytes → viable after thawing (maximally 3) → further culture → transferred to the uterus at the embryo stage (no selection of embryos according to morphology)

Safety & tolerability assessment

- •D3 or 4 after oocyte retrieval
- Signs & symptoms of OHSS (Golan et al., 1989)
 & treatment tolerability
- TVS → Ovarian volume & the presence of free abdominal fluid (ascites)

• WBC, CRP, Hct, oestradiol, LH, progesterone

→In case of Abdominal distension/pain, nausea, vomiting, diarrhoea or headache during later luteal phase → advise to visit

Tolerability assessment questionnaire

Or the second experience within the previous 5 days': (i) Abdominal distension (ii) Lower abdominal pain (iii)Nausea/vomiting (iv)Headache • Scale: 1 (perfect wellbeing) ~ 5 (maximum discomfort)

Outcome parameters

 Primary efficacy outcome: Cumulative live birth rate per patient undergoing oocyte retrieval

• Live birth rate per embryo transfer

- Time-to-conception (duration in weeks agonist administration \rightarrow + PPT \rightarrow live birth)
- Number of Biochemical pregnancies
- Number of Clinical pregnancies (+ fetal sac)
- Number of Clinical abortions (+fetal sac → no progression to live birth)

• Fertilization rate

- Number of 2PN oocytes / number of MII oocytes injected or cumulus-oocytecomplexes inseminated per patient
- Proportion of 2PN oocytes cryopreserved per cumulus–oocyte–complex retrieved
- Proportion of 2PN oocytes cryopreserved per MII oocyte retrieved (ICSI cases)
- Survival rate after cryopreservation
 - Number of vital embryos/number of thawed 2PN oocytes

Sample size and statistics

•30 patients

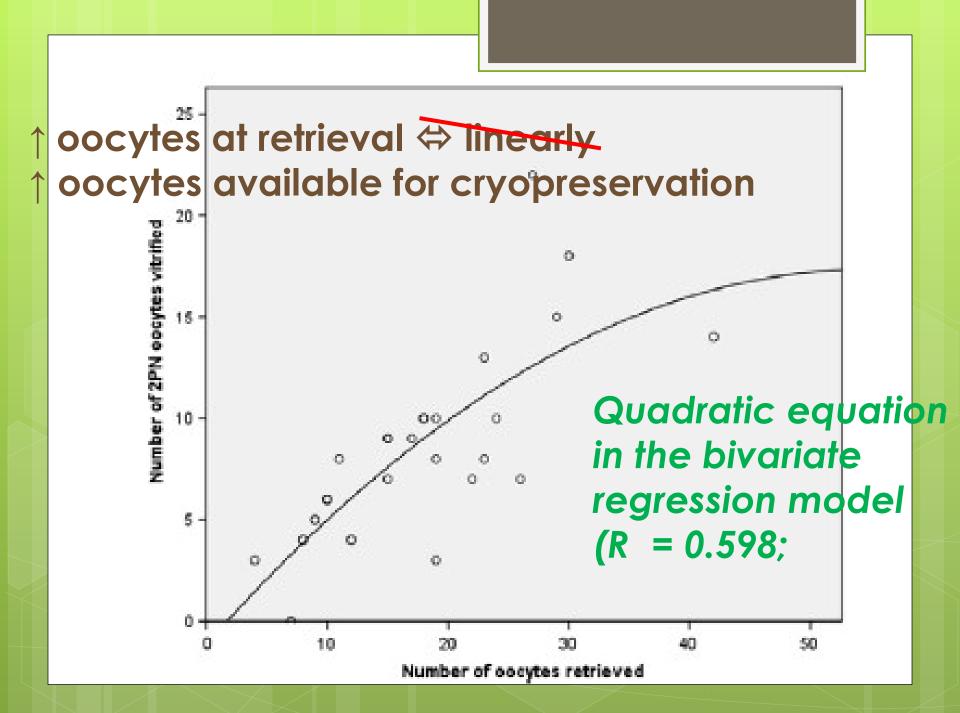
- Mean ± SD, median ± interquartile range or proportions with 95% CI
- Linear relationship between two variables → Pearson's correlation coefficient (Pearson's r)

 Number of oocytes retrieved ⇔ number of oocytes available for freezing (& later transfer) → regression modelling

Results

Demographic parameters

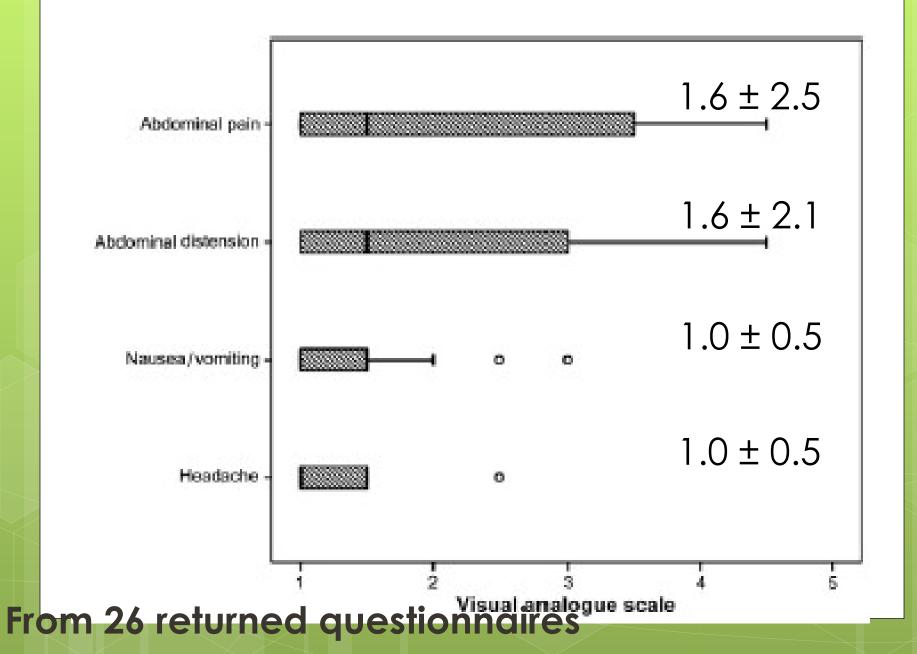
Parameter	Study population (n = 30)	
	Statistic	Range
Age (years)	30.0 ± 3.5	25-37
Weight (kg)	64.6 ± 12.0	52-110
Body mass index (kg/m ²)	22.9 ± 4.3	17.4-39.0
Duration of infertility (months)	39.5 ± 22.6	12-96
Cycle length (days)	33.7 ± 12.8	25-90
Cycle rank	2.0 ± 1.3	1-6
No. of previous pregnancies	3/30 (10)	NA
No. of previous live births	2/30 (6.7)	NA


•19 x regular cycle, 11 x irregular cycle

• 13x1st IVF Tx attempt, 11x2nd, 3x3rd, 3x more

Parameter	Study population (n = 30)	
	Statistic	Range
Stimulation (days)	9.9 ± 2.0	6–17
Total FSH (IU)	2564.9 ± 722.4	1350-3750
FSH/day (IU)	273.3 ± 65.5	150-375
On day of final oocyte maturation		
Oestradiol (pg/ml)	3619.9 ± 2123.0	478-9799
Progesterone (ng/ml)	1.7±0.9	0.6-4.6
No. of follicles >10 mm	18.3 ± 8.2	9-40
No. of COC	17.0 ± 8.5	4-42
No. of MII oocytes (n = 29)	13.4±6.6	3–26
Fertilization rate (%)	65.4 ± 20.5	19—100
No. of ZPN vitrified ^a	8.4 ± 4.5	3–22
2PN oocyte vitrified per COC (%) ^a	50.9 ± 15.2	15.8-100
2PN oocyte vitr ified per MII oocyte (%) ^a	65.0 ± 20.0	18.8-100.0
Survival rate (%) ^b	96.3 ± 10.8	50-100
No. of embryos transferred ^c	2.1 ± 0.3	2-3
Modified cumulative embryo score ^c	24.3 ± 8.3	6-42
Luteal-phase haematocrit (%) ^d	37.4 ± 3.8	28-43

Stimulation characteristics


- Oscillation (and the second se
- Ix fertilization failure → 29x at least one 2PN oocyte vitrified (8.4 2PN)
- •Mean number of oocytes at retrieval: 17
- Number of oocytes at retrieval ⇔ ovarian volume on days 3–4 after OR: significantly correlated (Pearson's r 0.50, P = 0.02).

Tolerability and safety

- •No severe OHSS (0%, 95CI 0-11.4%)
- •No patient required hospitalization
- Mean luteal phase CRP 5.0 mg/l, WBC 9098/μl, progesterone12.9 ng/ml, oestradiol 620 pg/ml, LH 13.3 IU/l, Hct 37.4%
- Total mean ovarian volume: 158 ± 122 mm³
- Free abdominal fluid: in 32% patients (mean value of the largest diameter of free fluid pocket: 23 ± 7.2 mm)

On D3 or 4 after OR

• Significant correlation

- Abdominal pain ⇔ distension (Pearson's r 0.75, P < 0.01)
- Abdominal pain ⇔ nausea/vomiting: (Pearson's r 0.51, P = 0.01)
- •No significant correlation
 - Number of oocytes retrieved abdominal pain, distension, nausea or headache

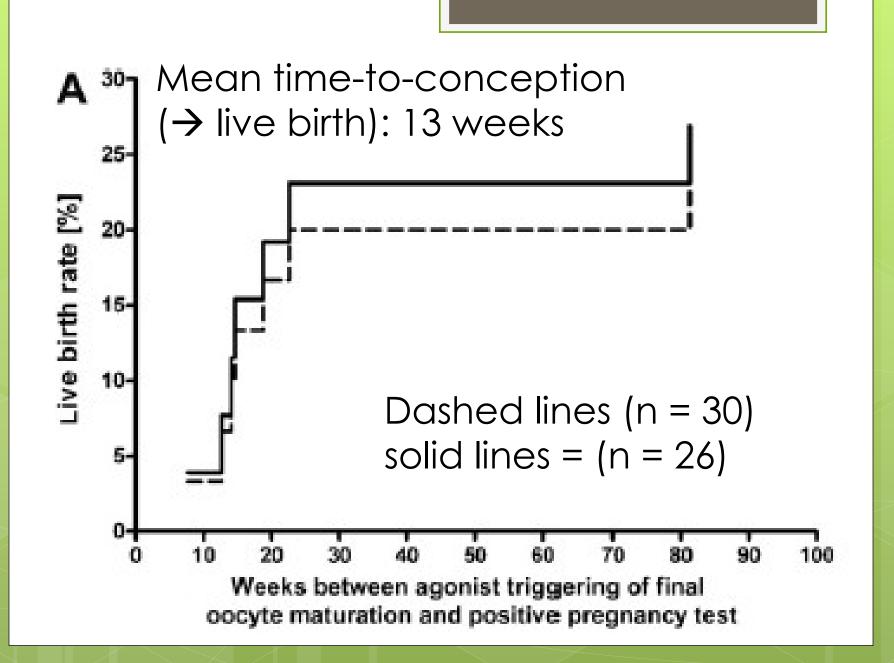
Live birth rate

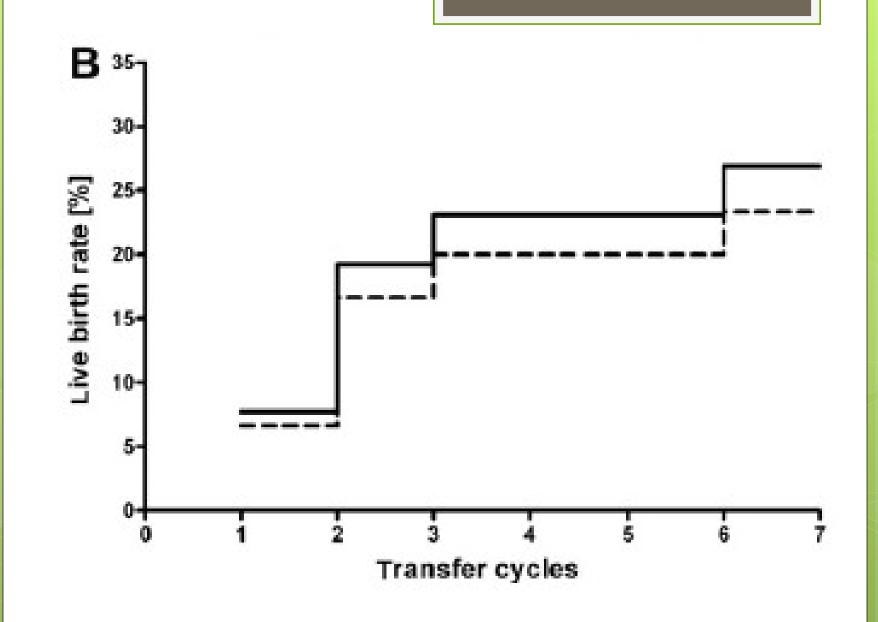
• 3x not undergo vitrified–warmed ET (1x divorce, 2x spontaneous pregnancy)

→26x at least one vitrified-warmed ET

- →Mean number of transfers: 2.4 ± 1.7
- O.5x 2PN oocyte → cryopreserved per cumulus-oocyte-complex
- Survival rate after thawing: 96%

Cryopreserved cycle rank	Live birth rate	
	% (n/total)	Confidence interval
1 2 3 4 5 6 7 Live birth rate per total cryopreserved cycles	7.7 (2/26) 13.6 (3/22) 9.1 (1/11) 0.0 (0/7) 0.0 (0/7) 50.0 (1/2) 0.0 (0/1) 9.7 (7/72)	2.1-24.1 ^a 4.7-33.3 ^a 1.6-37.7 ^a 0-35.4 ^b 0-56.2 ^b 9.5-90.5 ^a 0-79.3 ^b 4.8-18.7 ^a


• 72 ET → 5 biochemical pregnancies (5/30, 16.7%, 95%CI 16.3–33.6),


- →2 x first-trimester abortions (2/30, 6.7%, 95% CI 1.8–21.3%)
- →7 x live birth (7/30, 23.3%, 95% CI 11.8– 40.9%)

Cumulative live birth rate

 Strict intention-to-treat approach of analysis (with spontaneous pregnancies)
 → : 9/30 (30%, 95% CI 16.7–47.9%) = cumulative clinical pregnancy rate

 Undergoing at least on vitrified–warmed ET: 26.9% (7/26, 95% CI 13.7–46.1%)

End of the f/u period → 14x patient still had mean 5.8 ± 4.1 further 2PN oocytes cryopreserved

• Pregnancy outcome:

- 5 singleton live births, 2 twins (28.6% twin rate)
- All achieved live births → 2 ET in the successful cycle

Discussion

Intensified ovarian stimulation \rightarrow Retrieved oocytes \rightarrow Average 17 (Relatively young patients) \rightarrow 9/30 patients \rightarrow \geq 20 (maximum: 42) \rightarrow Safe in terms of OHSS occurrence Confirm the ability of GnRH agonist triggering \rightarrow Totally prevent severe OHSS, even in high-risk patients (Engmann et al., 2006; Griesinger et al., 2007, 2010; Manzanares et al., 2010)

- Maximizing the oocyte yield from a single oocyte retrieval -> Maximize the chance of the patient becoming pregnant from a single treatment cycle
- →↓ the need for subsequent IVF cycles with injections, oocyte retrieval procedures and the associated financial cost

Limitation – 1st

• An uncontrolled study for feasibility of intensifying ovarian stimulation

- No previous experience on <u>intensified ovarian stimulation +</u> <u>agonist triggering + cryopreservation</u> <u>of all available oocytes</u>
- ➔ Need control group

Limitation – 2nd

German embryo protection law:
 All 2PN oocytes viable after warming
 Transfer to the uterus (regardless of the morphological appearance)
 Vitrified-warmed ET: Ā 2.5 per patient
 Conceived: majority within 2x ET, only one from 6x

Limitation – 2nd

→Maximizing the oocyte yield → a worthless exercise for some patients (other patients could not be 'pushed' to conceive even by offering them a high number of vitrified-warmed ET)

Limitation – 2nd

- 15/26 patients \rightarrow only 2 transfers
- 11/26 patients $\rightarrow \ge 3$ ET \rightarrow only 2 additional live births
- A relatively large number of oocytes remained cryopreserved at the end of the follow-up period
- →If embryo selection → same number of live births by a much smaller number of ET

Limitation – 3rd

 The number of oocytes retrieved → not predictive of pregnancy (Griesinger et al., 2010; Verberg et al., 2009)

↑ numbers of oocytes → ↑ immature/degenerated oocytes and unfertilized oocytes after IVF or ICSI

→Low number of oocytes at retrieval → not a representation of advanced biological age

Limitation – 3rd

→↓ Potential benefit of <u>(Intensifying ovarian</u> <u>stimulation → ↑ the oocyte pool →</u> <u>available for fertilization & later transfer</u>)

Mean proportion of fertilized oocytes per cumulus-oocyte-complex: 0.5
 Standard GnRH antagonist protocol with daily 200 IU of FSH and hCG triggering of final oocyte maturation (Devroey et al., 2009)

Higher stimulation dose

- Lower ⇔ higher dose of FSH for ovarian stimulation, (100 IU ⇔ 200 IU) (Rombauts, 2007)
 Higher stimulation dose → higher number
- Higher stimulation dose → higher number of oocytes → no differences in pregnancy rates (Hoomans and Mulder, 2002; Out et al., 1999, 2001)
- If higher number of surplus embryos?
 No cumulative pregnancy rates (including cryopreserved transfers)

'Patient-friendly' approach

- Cycle using cryopreserved embryos ->
 less stressful for the patient (no need for
 injections, oocyte retrieval and the financial
 costs associated with a fresh treatment attempt)
- Each unsuccessful cryopreserved ET → significant psychological burden
- Cumulative live birth rate: 27%, in patient with minimum 1x ET
- Others need further treatment attmpts:

'Patient-friendly' approach

- →Intensifying ⇔ 'conventional' ⇔ 'mild' ovarian stimulation
 - Tolerability, health risks, financial costs, efficacy in terms of cumulative live birth achievement, psychological distress
 - Further Well-designed RCT ideally undergoing a reduced-dose ('mild') ovarian stimulation protocol

Thank you for listening