
CRYOPRESERVED-THAWED HUMAN EMBRYO TRANSFER : SPONTANEOUS NATURAL CYCLE IS SUPERIOR TO HUMAN CHORIONIC GONADOTROPIN-INDUCED NATURAL CYCLE

Human Mousavi Fatemi, M.D., Ph.D.,etc., Fertility and Sterility Vol.94, No.6, November 2010 Presenter: R2 孫怡虹 Advisor: VS 鍾明廷

INTRODUCTION

- Cryopreservation of surplus embryos
 - ↑ cumulative chance of conception per oocyte retrieval
 - 1st successful pregnancy 1983
- Preparation of the endometrium
 - Gonadotropins-GnRH agonists
 - Clomiphene citrate (selective estrogen receptor modulator)
 - Exogenous administered estrogens & progestatives

- Natural cycle
- Endometrial preparation (exogenous E & P, with or without the addition of a GnRH agonist)
- No conclusions could be drawn on the superiority of any one regimen in terms of ongoing pregnancy rate, (lack of randomized trials),

Cochrane review, Ghobara & Vandekerckhove

HCG

- Induce ovulation / Terminate the follicular phase / ET independent of the natural endogenous LH surge
- Well-proved biologic base / Clinical predictability / Ease of planning
- Terminated by hCG vs. spontaneous LH rise
 → lower probability of ongoing pregnancy in
 IUI cycles
 - Kosmas et al.
- Impact on endometrial receptivity (EM hCG receptors)

FOR FROZEN-THAWED ET

- Hypothesis of the current trial
 - Natural LH surge cycle would be superior to a hCG-induced unstimulated cycle
- Present study:
 - Natural cycle (without EM preparation)
 - Difference in the ongoing pregnancy rate between
 - Spontaneous LH-P rise (Study group)⇔hCG for final oocyte maturation & ovulation (Control group)

MATERIALS AND METHODS

- Prospective randomized trial
- Tertiary referral University Hospital

PATIENTS

- 168 patients, outpatient clinic
- October 1, 2007 ~ November 30, 2008
- Inclusion criteria:
 - Maternal age \leq 36 years
 - Regular menstrual cycle (25–34 days)
 - Previous conventional IVF or intracytoplasmic sperm injection (ICSI) with embryo cryopreservation on day 3,
 - Normal intrauterine cavity
 - Consent: frozen-thawed ET in an unstimulated cycle.

- Exclusion criteria
 - The use of testicular sperm for ICSI
 - Early (day 3) follicular phase FSH levels \leq 12 IU/L
 - American Fertility Society grades \geq III for endometriosis
 - BMI \geq 29 kg/m2
- Patients could participate in the study only once

PROCEDURES

- Day 2: TVS + serum hormone (FSH, LH, E2, P)
 Control group:
- Endometrium \geq 7 mm, Follicle \geq 17 mm

→ 5000 IU urinary hCG (final oocyte maturation)

- Monitor serum P & E2 (confirm ovulation)
- Excluded if premature ovulation confirmed (serum)

Natural cycle

•Day 8: Check LH

 \rightarrow Confirm LH rise \rightarrow monitor LH, E2, P the day after

•LH surge: \uparrow 180% > the latest serum value available in that patient and continued to rise

•Ovulation: following D1: \downarrow E2 + \uparrow P >1.5 nmol/

- No luteal support
- All ultrasound performed by a single physician
- LH, FSH, hCG, E2, P levels automated Elecsys immunoanalyzer (Roche Diagnostics, Mannheim, Germany)
- Intra-assay and interassay coefficients of variation:

→LH: <3% & < 4%, FSH: <3% & <6%, hCG:</p>
<5% & <7%, E2: <5% & <10%, P: <3% & <5%</p>

TIMING OF THE FROZEN-THAWED ET

- Embryo Frozen: day 3 (preimplantation development) in a previous treatment attempt
- Frozen-thawed ET planned
 - Study group, 5 days after the LH rise
 - Control group, 5 days after the hCG administration

IVF-ICSI TREATMENT, EMBRYO CULTURE/SELECTION

- IVF-ICSI Treatment: as described by Van Landuyt et al.
- Oocytes / embryos cultured in sequential culture media
- Embryo selection:
 - At least 6 blastomeres with $\leq 20\%$ fragmentation
 - With >20% but <50% fragmentation, if had reached the 8-cell stage on day 3

SELECTION OF FROZEN-THAWED EMBRYOS FOR TRANSFER

- Cleavage-stage embryos → thawing
 → cultured overnight in sequential media
 → Evaluate further cleavage next morning
- Max. 2 embryos could be replaced per frozenthawed ET
 - Only 1 straw containing up to 2 embryos was thawed
 - → At least 1 embryo survived with all cells intact → If not → 2^{nd} straw was thawed

STATISTICAL TESTS

• Estimate the sample size

=> No published data were available on frozen-thawed ET (Natural ⇔ Semi-natural cycles "hCG")

 Difference of 15% in ongoing pregnancy was acceptable (cryo-thawed regimens acceptable (cryo-thawed regimens acceptable)

 Change the policy of frozen-thawed ET
 Anticipating the higher number of visits (hormonal assessment)

- Group sequential method:
- 120 / group
 - → Statistical power: 80%
 - Absolute difference of 15% (ongoing pregnancy rate between the groups)
 - $\rightarrow \alpha$ level: 0.05 (2-sided z-test)
- 1st interim analysis: P \leq 0.029 (between 2 groups)

RESULTS

• 168 patients (assigned randomly) \rightarrow 1st interim

No undergo transfer	Bad embryo f quality anal	Failed folliculo- genesis up to D21 _{ysis} of the cycle				
Study group (23/84)	17	6				
Control group (21/84)	11	10				
orx sponduleous en gloup						

63x hCG group

5	Spontaneous LH (n = 61)	hCG group (n = 63)	P value
Female age (y)	32.9 ± 3.1	32.9 ± 3	NS
Body mass index (kg/m ²)	23.8 ± 2.9	23.1 ± 2.9	NS
Cycle length (d)	28.7 ± 1.5	28.8 ± 1.7	NS
Indication for treatment (% of patients)			NS
Andrologic	70	73	
Tubal	10	15.9	
Idiopathic	20	11.1	
No. of trials	2.2 ± 1.9	2.2 ± 1.8	
Procedure (% of patients)			NS
IVF	8.2	14.3	
ICSI	91.8	85.7	
Type of previous stimulation (% of patie	nts)		NS
Long GnRH agonist-urinary gonadotrop		27	
Long GnRH agonist-recombinant FSH	1.6	3.2	
Short GnRH agonist-urinary gonadotrop		7.9	
GnRH antagonist-recombinant FSH	62.3	50.8	
GnRH antagonist-urinary gonadotropins		11.1	
No. of visits	4. 1 ± 1 .4 >	2.6 ± 1.1	.001
No. of days until LH-hCG	14.3 ± 2.3 >	13.4 ± 2.6	.02
Embryos transferred	1 .6 ± 0.5	1.4 ± 0.5	NS
Quality score of transferred embryos	1.3 ± 0.5 >	1.1 ± 0.3	.02

HORMONAL PROFILE OF PATIENTS

Spontaneous LH (n = 61) hCG group (n = 63) *P* value

Day 3			
FSH (IU/L)	7.3 ± 1.7	7.4 ± 4.9	NS
LH (IU/L)	5.1 ± 1.9	4.7 ± 1 .3	NS
$E_2 (pg/mL)$	41.7 ± 18.6	39 ± 1 4.4	NS
P (ng/mL)	0.6 ± 0.3	0.7 ± 0.4	NS
Day of hCG administration/LH	rise		
FSH (IU/L)	9.9 ± 5	7 ± 4. 1	NS
LH (IU/L)	34.6 ± 18.3	17.5 ± 16.7	.001
$E_2 (pg/mL)$	275.4 ± 121.3	252.7 ± 91.3	NS
P (ng/mL)	0.93 ± 0.45	0.91 ± 1.6	NS

- Control group:
- → ↑ LH (without P ↑): 36.5% (23/63)
- Previously LH rise with hCG
- \rightarrow Only 4.3% (1/23) became pregnant

TREATMENT OUTCOME

	Spontane ous LH (n=61)	hCG group (n=63)	Differen ce, % (95% CI)	P valu e
Ongoing pregnancy rate-ET	31.1 (19)	14.3 (9)	16.9 (2.1- 30.9)	0.025
Miscarriage rate-ET	0(0)	3.2 (2)	3.2 (10.9~3. 2)	NS
Biochemical rate-ET	3.3 (2)	3.2 (2)	0.1 (7.8~8.3	NS

DISCUSSION

- Natural cycle over a natural cycle controlled by hCG
 - Significantly higher ongoing pregnancy rate
 - Lower embryo quality (1.3 \pm 0.5 vs. 1.1 \pm 0.3, P=.02)
 - Number of visits (4.1 ± 1.4 vs. 2.6 ± 1.1, P=.001)
 - Number of days until hCG administration–LH peak (14.3 \pm 2.3 days vs. 13.4 \pm 2.6 days, P=.02)

ENDOMETRIAL EFFECTS FROM HCG

 Normal cycles + hCG + frozen-thawed ET of cleavage-stage embryos => PR: 19%, live-birth rate: 15%

Center for Reproductive Medicine of the Free University of Brussel

Implantation & Ongoing pregnancy

Receptive endometrium & Functionally normal embryo

 Hypothesis: hCG administration → Endometrial effect → significantly lower pregnancy rate in

LH & HCG ACTION

- Same receptor of EM expresses throughout the cycle
- Alternative splicing
- ⇒Full-length-R only present proliferative ~ midluteal phase
- \Rightarrow Only the extracellular domain is expressed
- \Rightarrow Deletion of exon 10

Not affect hCG action / Impaired LH action

LH & HCG ACTION

- LH vs. hCG
 - Much shorter half-life / An intrinsic molecular difference
 - No dose-finding study for an optimal hCG concentration to replace the endogenous LH surge
- Natural cycle
 - Endometrium at the end of the follicular phase
 - ↑ endogenous LH
 - No hCG before apposition of the embryo

HCG GROUP IN THIS STUDY

- (EM thickness \geq 7 mm, follicle diameter \geq 17 mm) \rightarrow hCG administration
- LH rise without concomitant P rise
- 36% of LH rise with PR 4.3%
- hCG & LH : the same receptor / simultaneous presence → affect pregnancy adversely

HCG

During normal menstrual cycle

- Expressed & produced in human secretory endometrium
- Glandular endometrial production ↑ toward the late secretory phase (not the beginning)
- ⇒Implicate implantation & maintenance of the pregnancy

 Exerts control over the vascular endothelial growth factor

VASCULAR ENDOTHELIAL GROWTH FACTOR

- Key regulator of neoangiogenesis & vascular function
- 1 toward the end of the secretory phase
- hCG → ↑ Intrauterine VEGF

⇒Suggest involvement in the initiation of neoangiogenesis (essential for the formation of a functional placenta)

- Small (N = 112) retrospective study → serial monitoring → ovulation with hCG triggering for timing frozen-thawed ET in natural cycles Weissman et al.
 - Number of monitoring visits: control < study group</p>
 - ⇒Contrary: no adverse effect on cycle outcome
- Future studies should focus on
 - Natural cycles vs. hCG-induced
 "upstimulated" cycles

EMERGING EVIDENCE

- Administration of hCG in the late follicular phase
- ⇒Induces a cascade of events in the endometrium
 - ⇒Started several days later in the presence of endogenous LH rise
 - ⇒Negative impact on ongoing pregnancy rate
- Natural cycle superior to a hCG controlled cycle for planning the frozen-thawed ET (a Prospective randomized trial)

THANK YOU FOR YOUR LISTENING