Overweight and seminal quality: a study of 794 patients

Ana C. Martini, Ph.D.,
Fertility and Sterility Vol. 94, No. 5, October 2010

INTRODUCTION

- Diminution in male fertility (adverse trend > 20+ yrs)
 - In Patient for infertility & overall population
 - Rapid \(\) in frequency = > Environment factors, esp. nutritional habits \(\)/diet composition
- Obesity \rightarrow Epidemic proportions (U.S, 22% \rightarrow BMI \geq 30 kg/m 2) \rightarrow Associated with reduced male fertility
- Not well established:
 - BMI Male fertility & Seminal parameters
 - Overweight or obesity Functional activity of

- Obesity & nutritional
- → Significant disturbance → plasma hormonal milieu
 - ↓ Total / Free T levels
 - Gonadotropin levels
 - Binding capacity of sex hormone—binding globulin
 - Hyperestrogenemia
- Affect male reproductive system & gamete quality

Objectives

- Evaluate semen from patients grouped by their BMI:
- [1] **Sperm quality parameters** such as volume, concentration, motility, morphology, viability, membrane integrity, functionality, and nuclear maturity
- [2] Levels of **functional markers** of epididym is and male accessory glands (seminal vesicles and prostate)
- [3] T-concentration

MATERIALS AND METHODS

- Andrology & Reproduction Laboratory in Cordoba, Argentina, 2006–2007
- 1,758 patients \rightarrow 45.2%, 794 patient included
- Height and weight, age, abstinence period, toxic exposure, genitourinary & other diseases that can alter the hypothalamic hypophysealtesticular axis
- 3 groups according to BMI:
 - Normal (18.5 % BMI < 25)
 - Overweight (25 % BMI < 30)
 - Obese (30 % BMI % 50)

B

Reasons for exclusion

Samples

- A bstinence of 2-10 days → semen samples were collected
- When necessary, transported to the laboratory maintained at approximately 37°C

A nalyzed within 1 hour after collection

Seminal Parameters Evaluated

- Liquefaction → Semen analysis: according to the WHO recommendations
 - Sperm morphology: Papanicolaou staining, Kruger's strict criteria
 - Sperm concentration & motility: conventional methods in a Makler counting chamber
 - Sperm viability: supra-vital eosin Y technique
 - Sperm chromatin condensation: Aniline blue technique
 - Spermatozoa: Hypo-osmotic swelling test

- Seminal volume: In a graduated conic tube
- Functional markers of epididym is, seminal vesicles, prostate (Colorim etric techniques): Seminal plasma concentrations of
- → Neutral a -glucosidase (NAG), Fructose, Citric acid
- → Expressed in relation to semen volume
- Seminal total T levels: commercial RIA kit, sensitivity: 0.08 ng/m L
- Results were adjusted according to seminal volume

Statistical Analysis

- Mean SEM
- M ultivariate regressions (linear regression)
- Independent variables: BMI, age, & abstinence
- Significance: 0.05

RESULTS

Characteristics of the patients enrolled in the present study.

77.4%, BMI = 30		Patients grouped by BMI			
16.8%, BMI = 35 5.8%, 40 < BMI ≦		Normal (n = 251)	Overweight (n = 388)	Obese (n = 155)	
Patients included in each category (%)	100.0	31.6	48.9	19.5	
BMI (kg/m²)	27.2 ± 0.1 (18.6-46.8)	23.4 ± 0,1	27.3 ± 0.1	33.2 ± 0.0	
Age (y)	34.9 ± 0.2 (20-65)	34.1 ± 0.4	35.1 ± 0.3	36.0 ± 0.5	
Abstinence period (d)	4.0 ± 0.1 (2-10)	3.9 ± 0.1	4.1±0.1	4.1±0.1	

Slope of BMI and P value of linear multivariate regressions on seminal parameters from patients attending an andrology laboratory.

Seminal parameters	Normal (n = 251)	Overweight (n = 388)	Obese (n = 155)	BMI (slope)	P value
Seminal volume (mL)	3.2 ± 0.1	3.1 ± 0.1	3.1 ± 0.1	-0.01	0.526
Sperm concentration (× 10 ⁶ /mL)	43.7 ± 1.9	44.2±1.8	43.0 ± 3.2	-0.45	0.162
Motility (% of total motile spermatozoa)	51.4 ± 1.2	50.2 ± 1.0	46.6 ± 1.7	+0.49	0.007
Rapid motility (% of rapid spermatozoa)	39.8 + 1.2	38.8+0.9	35.9 + 1.6	-0.41	0.819
Viability (% of dead spermatozoa)	16.9 ± 0.6	17.8 ± 0.5	19.0 ± 1.0	0.10	0.321
Kruger's morphology (% of normal spermatozoa)	8.3 ± 0.4	8.4 ± 0.3	8.7 ± 0.5	0.001	0.973
OMS morphology (% of normal spermatozoa)	19.3 ± 0.7	19.7 ± 0.6	20.5 ± 1.0	0.06	0.552
HOS (% of reactive spermatozoa)	79.3 ± 0.9	78.1 ± 0.8	76.1 ± 1.7	-0.16	0.306
Nuclear maturity (% of mature nuclei sperm)	66.9 ± 1.2	66.8 ± 1.0	66.7 ± 1.5	-0.03	0.886
Alpha-glucosidase (mg%)	71.7 ± 3.5	65.0 ± 2.4	62.6 ± 3.5	-0.99	0.033
Fructose (mg%)	333.6 ± 8.1	329.4 ± 6.8	351.6 ± 9.6	227	0.049
Citric acid (mg%)	460.9 ± 10.4	443.9 ± 8.8	449.6 ± 12.1	-0.44	0.769

- Seminal T levels between groups
 - No significant differences
 - Normal, 1.41 \pm 0.13 ng/Mlejaculate, n = 27
 - O verweight, 1.47 ± 0.12 ng/m L ejaculate, n = 27
 - Obese, 1.97 ± 0.29 ng/m L ejaculate, n = 26

DISCUSSION

- parameters reflecting semen quality
 - Sperm quality
 - Levels of functional markers of the epididymis & male accessory glands

- Obesity
 - >Sperm parameters: controversial issue
 - More deleterious effects, sperm density / motility

- Normozoospermia, higher BMI (30.1-39)
 significantly lower **sperm concentration** *Similarly, Koloszar et al.*
- Sperm morphology / Gamete density reflect sperm atogenesis /androgen -dependent process
- "massively" obese hypotestosteronem ia →
 lenermatogenesis

- 990 fertile males → significant alterations in underweight men (BMI < 18.5)</p>
 Q in et al.
- "being overweight may be a protective factor for low sperm concentration and low total sperm count" reproductive hormones

plasma levels

- BMI (T, FSH, LH, E2) Sperm density
- Alterations in reproductive hormones in obese

This study

- Failed to find...
- ignificant association between BMI & sperm concentration
- alterations in sperm morphology, (W H O 1992 or Kruger's strict criteria)
- differences in the diminution trend between obesity II or morbid obesity and obesity I (linear regression analysis)
- Association between BMI and other seminal parameters

- Not healthy volunteers
- 94.2%, BMI < 40 (obesity I plus obesity II); 5.8%, 40 < BMI < 50 (morbid obesity)
- Discrepancies may be due to differences in
 - Volunteers' BMI range
 - Distribution in the obese group

- Negative association between BMI &
 - Sperm motility (total & rapid motility)
 - \blacksquare NAG levels (P < 0.05)
 - An enzyme secreted into the epididymal fluid, as modulator of epididymal maturation (a process involved in sperm motility acquisition)
 - → Androgen dependency
- lacktriangle obese patients ightarrow androgen level alterations
- obesity epididymal function (deleterious effect)

BMI

- Most widespread parameter used to assess body composition
- Possibly not the most accurate
- Measure of weight in relation to height of body fat
- Androgen levels are more closely associated with abdominal fat levels than with BMI
- Differences in dietary proteins and fibers (not fat or carbohydrates)

 major determinants of sex hormone binding globulin plasma levels

Leptin

- Serum levels
 - positively correlate with BMI
 - negatively correlate with sperm concentration, motility, morphology, and plasma T levels
- Detected also in tubuli sem iniferi & sem inal plasma
- Leptin receptor: Expressed in testicular germ cells
- → Mediates a link between obesity & male infertility

In summary

- The results support the idea of
 - A deleterious effect of obesity on seminal quality
 - probably mediated by alterations in epididymal function
- Fertility \downarrow in obese men, multiple factorials, in which semen quality \downarrow has a documented effect

- Other factors must be taken into account
- accumulation of toxic substances and endocrine disruptors in the fatty tissue
- life style
- and /or sexual dysfunction
- \blacksquare Obesity \uparrow \rightarrow obese men with reduced fertility \uparrow

THANKS FOR LESCINING

