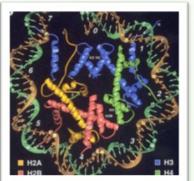
Epigenetics and its Role in Male

Epigenetics end tislity in male infertility

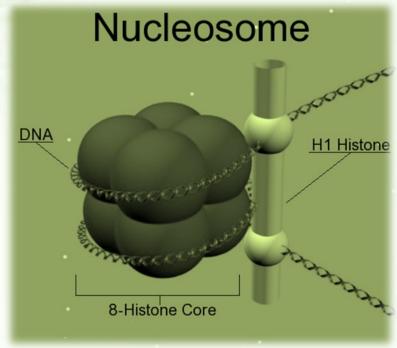
J Assist Reprod Genet, 31 January 2012


Presenter: R3 孫怡虹 / Advisor: Dr. 康介乙

Male infertility

- A complex problem: genes, epigenetic factors
- Aberrant epigenetic reprogram ming in male germ cells Can lead to Sperm abnormalities
- Epigenetic changes contribute to male infertility

- Epi- (above or over)-genetics change:
 - Changes in the phenotype caused by mechanisms (ex. gene action & expression) other than changes in DNA sequences


Epigenetic changes

- ullet DNA wraps around histories $\overline{}$ nucleosomes
- Modifications in chromatin control geneexpression in a spatiotemporal manner

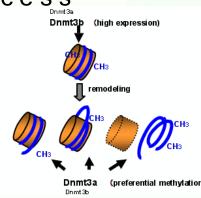
• Epigenomics:

Genome-wide approach to studying epigenetics

Epigenetic mechanism of gene regulation

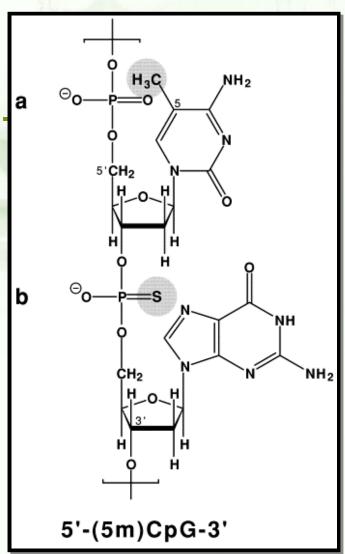
2 major modifications that occur in chromatin

1. DNA methylation


1. Post-translational histone modifications

DNA methylation

- A biochemical process
- Add methyl group → 5'-cytosine pyrimidine ring
- A result of DNA methyltransferase (DNMT)
 activity
- Typically occurring in a CpG dinucleotide


DNA methyltransferase (DNMT)

- 3 main DNMTs:
- i) DNMT1: key role in maintenance of methylation
- ii) D N M T 3a/3b:
 - De novo methyl transferases
 - Methylate the genomic DNA during early embryonic development
 - A gradual rather than an abrupt process

CpG dinucle o tide

CytosinephosphodiesterGuanine

CpG islands

- Genomic regions, approximately 500 base pairs long (200 at least)
- High frequency of CpG sites (CG:GC ratio
 >55%)
- Located within the about 40% of promoter
 region of mammalian genes (70% of human)
- Methylated \rightarrow transcriptional silencing
- Hypomethylation & hypermethylation can occur simultaneously at different regions in the genome

Post-translational histone modifications

- Acetylation, methylation, ubiquitylation, phosphorylation
- Main players in epigenetic regulatory mechanisms
- H2A, H2B, H3 and H4: integral part of nucleosomes
- H 3 ⇔ H 4 (intricate interplay) → antagonistically to regulate (active chromatin → inactive histone code)

Acetylation

 A marker of active, transcriptionally competent regions

 Hypoacetylated histones:
 In transcriptionally inactive euchromatic or heterochromatic regions

Methylation

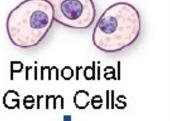
- Marker for active & inactive regions of chromatin
- Histone H3 N terminus lysine 9 on the (H3 K9):
 - A feature of silent DNA
- Histone H 3 lysine 4 (H 3 K 4)
 - Denotes activity
 - Predominantly at the promoters of active genes

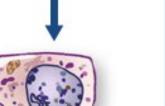
Epigenetic gene regulation during germ —cell development

- Epigenetic mechanisms specific sets of genes
 - Regulate DNA accessibility throughout an organism's lifetime
 - Active at any stage of development
- Each cell type has its own **epigenetic** signature:
 - Developmental history, environmental influences
 - Ultimately reflected in the phenotype of the cell and organism

- Before fertilization:
 - Paternal genome delivered by the mature sperm, has a haploid genome, packaged densely with protamines
 - Maternal genome arrested at metaphase II is packaged with histones
- At the time of fertilization:
 - Protamines are rapidly replaced by histones
 - →Oocyte: complete 2 metaphase → polar body
 - The H3 and H4 histones that associate with the paternal chromatin are more acetylated than those present in the maternal chromatin

Spermatogenesis

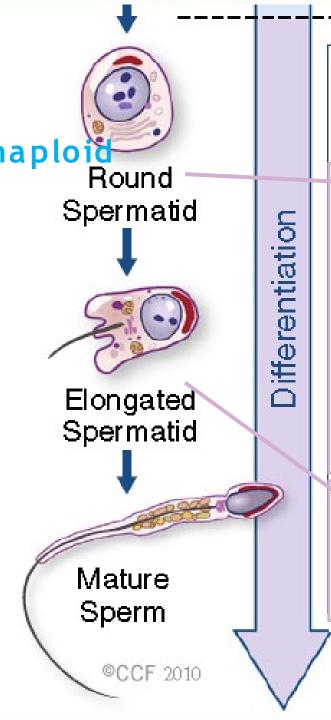

Mitosis


Meiosis

Post-im plantation

Pluripotent cells in the epiblast >> PGCs

- Arrested in the prophase of meiosis—
- ↑ Enter mitotic arrest
- Premeiotic PGCs and spermatogonia: Unique patterns of histone modifications such as low H3K9me2 levels
 - → change dynamically upon initiation of meiosis
- Changes in the composition and modification of histones could contribute to chromatin modifications



Spermatogonia (A & B)

Spermatocyte (I & II)

Spermiogenesis

 Final developmental change

after meios is

- Global nuclear remodeling occurs
 - Some histone marks such as H3K9me2 on the inactive X chromosome are retained
 - ✓ Testis-specific linker histone variant H1T2 →

crucial chromatin condensation

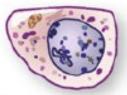
A linker histone variant H lls 1

(histone-1 -like protein in spermatids 1) is expressed

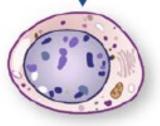
histone-protamine exchange process

- Hyperacetylated nuclear histones
 → Replaced by transition proteins (TP1 and TP2) → Removed and replaced by protamines
 → Incorporated into sperm chromatin
 → Induces DNA compaction (important for the formation of spermatozoa and providing a safe
- The presence of som atic-like chromatin in the sperm nucleus could transmit different epigenetic information to the offspring

environment for the genome)

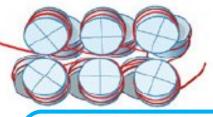

Spermatogenesis

Mitosis


Meiosis

Primordial Germ Cells

Spermatogonia (A & B)



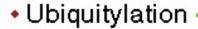
Spermatocyte (I & II) Spermatocytogenesis

Epigenetic Events

Methylation of DNA

Set up the paternal specific

Modification occurs while structure is condensed

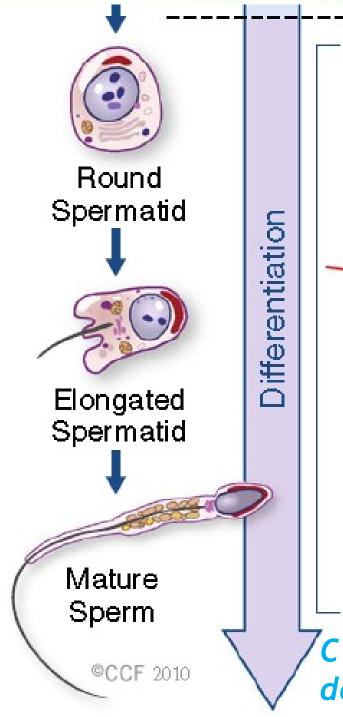

Possible Errors

- Abnormal DNA methylation
- Altered expression of mRNAs and other non-coding RNAs

Assist in both recombinati

Epigenetic Events

• Phosphorylation of DNA (2 events) XY body


- Sumoylation
- H2AZ and H3.3 incorporation

foirmatied in XY Body

formation

Possible Errors

- Double strand breaks
- Chromosomal nondisjunction
- Abnormal histone modification

Spermiogenesis Assist in the Epigenetic Events Histone-

- HyperacytelationProtamine
- Histone to protamine transition
- Histone removal and degradation

Possible Errors

- Protamine replacement errors
- Abnormal centrosome formation
- Apoptotic DNA fragmentation

Consequence of apoptosis following double strand breaks or abnormal

BRDT (bromodomain testis specific)

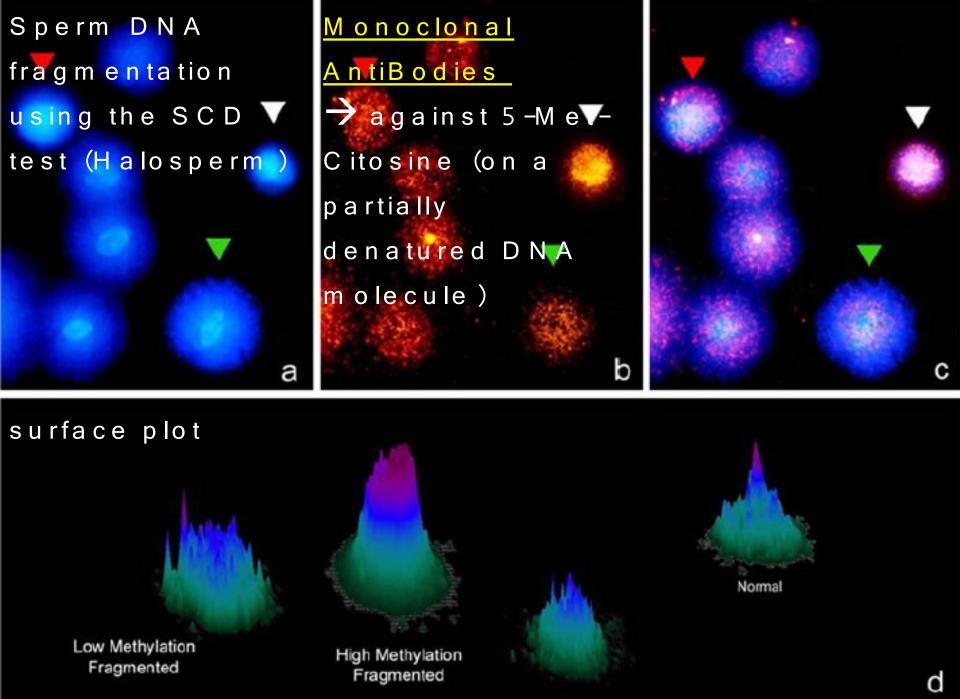
- Double bromodomain-containing protein
- Binds hyperacetylated histone H4 before accumulating in condensed chromatin
- Help organizing the spermatozoon's genome by
 - Mediating a general histone acetylation induced chromatin compaction
 - Maintaining a differential histone acetylation of specific regions

BORIS

(brother of regulator of imprinted sites)

- Specifically expressed in male gonads
- Could be directly involved in the resetting of methylation marks during male germ cell differentiation
- Linked with <u>methylases mediating de novo</u> <u>methylation</u> & <u>demethylases mediating erasure</u> <u>of imprinting marks</u>
- Domains: the same 11 Zinc Finger as CTCF

CTCF


- CCCTC binding factor
- A somatic regulator for expression of imprinted genes
- Binds to specific target DNA sequences
- Plays an important role in the maintenance of differential methylation patterns in somatic cells
- Present in both somatic and germ cells
 (BORIS is expressed specifically in the male germ line)

Paternal impact on early embryogenesis

- Advanced paternal age:
 - \downarrow semen volume, sperm morphology/motility
 - No significant reduction in sperm concentration
- High DNA fragmentation:
 - Dim inished sperm count, motility, morphology
 - Decreases fertilization and implantation rates
- Methylation depletion: 5-aza-deoxycytidine
 (base analog) → incorporated into DNA → ↓
 level of DNA methylation → varying the gene
 expression

Methodology

- ? Actual role of DNA modifications on fertilization?
- Absence of reliable techniques, easy, reproducible, for the level of DNA modification in each gamete
- <u>Sperm Chromatin Dispersion (SCD) based</u> technology
- ✓ Detection of DNA breaks in lysed sperm nuclei by specific DNA Breakage Detection – Fluorescence In Situ Hybridization (DBD → FISH) assay

Histones

- Best for transmission of epigenetic information (: influence on the modification of chromatin structure & access of transcriptional machinery to genes)
- Methyl transferases → mono-, di-or trim ethylation
 of lysine or arginine → Facilitate gene silencing
- ? Whether modified histones play a crucial role in gene expression during early embryogenesis?
- ? If abnormal histone modifications in the sperm \rightarrow \downarrow Embryo development?

- Alterations in methylation patterns an effect biallelic expression or repression of imprinted genes various pathologies
- Impaired spermatogenesis ⇔ aberrant H 4 acetylation
- H 4 hyperacetylation: observed in infertile men exhibiting Sertoli cell only (SCO) syndrome

Epigenetic changes important for male gametes

- Gonadal sex determination and testis development
 - In the rat: Occur between embryonic days 12 \sim 15 (E12 to E15)
 - In the human: after midgestation
 - Initiated by differentiation of precursor Sertoli cells that result from Testis-determining factor SRY

- Aggregation of the precursor Sertoli cells, PGCs, migrating mesonephros cells (precursor peritubular myoid cells)
- Promotes testis morphogenesis & cord formation
- Fetal testis: Steroid receptors (+), Target for endocrine hormones
 - Androgen receptor (AR) & estrogen receptor-b
 (ERb) → present at the time of cord formation
 (E14), in Sertoli cells, precursor peritubular
 myoid cells, germ cells

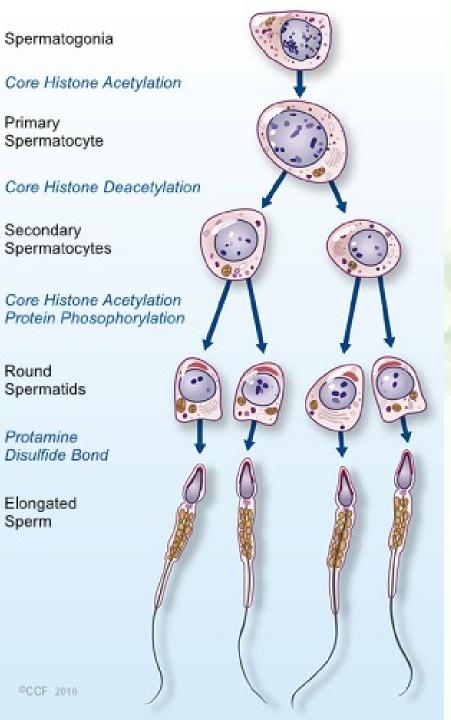
- Testis does not produce steroids at this stage of development
- Estrogens and androgens have the ability to influence early testis cellular functions
- Endocrine disruptors (Vinclozolin,
 methoxychlor), → at a critical time during
 gonadal sex determination (E8~E15 in the rat)
 → adult testis phenotype: ↓spermatogenic
 capacity + infertility

- External factors

 can induce an epigenetic
 transgenerational phenotype through an
 apparent reprogram ming of the male germ line
- ? Steroidal factors acting inappropriately at the time of gonadal sex determination \rightarrow reprogram the germ line epigenetically (altered DNA methylation) \rightarrow transgenerational transmission of an altered phenotype or genetic trait?

- Many epigenetic modifiers
- DNA methyltransferases, histone-modification enzymes & their regulatory proteins
- play essential roles in germ -cell development
- Some are germ -cell-specific genes (such as Dnmt3L and Prdm9)
- Numerous intra-and inter-individual differences in DNA methylation in human sperm samples -> phenotypic differences in the next generation
- Sperm samples from oligospermic patients: often contain DNA -m ethylation defects at imprinted loci

Epigenetics and protamine abnormalities


- During differentiation of the male gamete \rightarrow the genome undergoes major changes
 - Homologous recombination

 Affect the DNA sequence and genetic information

 Alter its nuclear structure and epigenetic information
- How the specific nucleoprotam ine /nucleohistone structure of the sperm nucleus conveys epigenetic information?

Protamines 1 & 2 (P1/P2)

- Essential for sperm function
 - haploinsufficiency of either P1 or P2 \rightarrow \downarrow amount of the respective protein
 - Mutation of the calmodulin-dependent protein kinase Cam k4 (phosphorylates P2)
 defective sperm iogenesis & male sterility
- P1/P2 in fertile men lies close to 1.0 (0.8 \sim 1.2)
 - Perturbation of this ratio \rightarrow poor semen quality,
 - **1**D N A damage, **↓**fertility

- Elongating spermatid
- 1. Long after the completion of meiosis
 Protamine
 replacement

 In mature mammalian spermatozoa, DNA is actually not homogeneously packed with protamines

- Some histories are retained in humans
- The persistent histones could be an important epigenetic code in the sperm and may not be the result of inefficient protamine replacement

- "Abnormal protamine replacement generally diminished semen quality"
- may be due to a defect in the unique system of:
 during spermatogenesis temporal uncoupling
 of transcription and translation

- → Abnormal protamine incorporation into chromatin → may affect transcription of other genes
- Ex.: Deregulation of protamines (in mice)
 - > Precocious chromatin condensation
 - → Transcription arrest
 - → Spermatogenic failure

- Human sperm nucleus:
 - Retains 10-15% of its original histone content
 → distributes it in a heterogeneous manner within the genome
 - Histories (retained bind specific regions)
 convey epigenetic information to the early embryo
- Sperm with abnormal protamine replacement for ICSI

 obvious and profound implications

Future research:

- (Fertile men ⇔ patients with known chromatin abnormalities)
- mature sperm
- Role of retained histones throughout the sperm genome

Epigenetics and ART

- ART → Induce epigenetic alterations
 → Affect fetal growth and development
- ✓ May depend on genomic imprinting (such as the Beckwith-Wiedemann or Angelman syndrome)
- ✓ Loss of gene imprinting may occur during preimplantation under certain conditions of gamete handling
- Possible epigenetic risks linked to ART:
- ✓ Use sperm with incomplete reprogramming
- ✓ IVF procedures at a time of epigenetic reprogram ming

Loss of epigenetic control (epim utation)

- May 1~2 orders of magnitude > somatic DNA mutation
- 2. Inappropriate expression of the affected gene
- 3. May also expose hidden genetic variation
- 4. Some sub-fertile couples may have a genetic predisposition to epigenetic instability
 → offspring more susceptible to epigenetic changes (independently of whether or not conceived by ART)
- 5. Affecting imprints can arise during <u>imprint</u> <u>erasure</u>, <u>establishment or maintenance</u>

Some studies...

- Loss-of-function mutations of DNA methyltransferases
 - Affect all imprinted domains
 - As well as other chromosomal regions
- Mutations of Dnmt3a (de-novo methylase) and maintenance methylase (Dnmt)
 - ->Lead to loss of imprinting & embryonic lethality
- Targeted disruption of Dnmt3L in mice
 - → Homozygous mutant males: Azoospermia
 - Homozygous females: heterozygous progeny died before midgestation

Imprinting defects and subfertility

- Can have a common and possibly genetic cause
- Super-ovulation instead of ICSI
- → ↑ risk factor of child with an imprinting defect
- → Maturation of epigenetically imperfect oocytes
- Disturb process of DNA methylation in the oocyte
- Can lead to spontaneous abortions
- The level of DNA methylation in human sperm
 ⇔ could be linked to their ability to initiate
 pregnancy by ART

Epigenetics and testicular cancer

- Testicular germ cells tumor (TGCT)
 - ~98% of all testicular neoplasms and is
 - The most common malignancy among young males
- Epigenetic changes that deregulate gene expression are frequently observed during the development of cancer
- The epigenetic equilibrium of the normal cell is disrupted during tumorigenesis

In human neoplasms

- DNA methylation defects:
- ✓ Hypomethylation, global loss of 5-methylcytosine (less)
- Hypermethylation of regulatory regions of promoters (more)
 - → silencing of tumor suppressor genes
 - The first epigenetic abnormality to be identified in cancer cells
- TGCTs are believed to arise from primordial germ cells (PGCs)— (DNA methylation → erase parental imprints → totipotency is restored)

- The genome of seminom as
 - Extensively hypomethylated
 - Virtually completely devoid of CpG island hypermethylation
- Nonseminoma group
 - Less extensively hypomethylated
 - Variable CpG island hypermethylation levels (comparable with tumors of other tissues)

- ↑methyltransferases (DNMT3A & DNMT3B), their homologue DNMT3L ⇔ embryonal carcinoma subtype significantly
- The presumptive <u>testis</u>—<u>specific chromatin</u>
 <u>regulator</u> CTCFL (BORIS) and the <u>pluripotency</u>
 <u>marker</u> POU5F1 (OCT3/4) ⇔ cancer/testis
 associated genes
- hypermethylated in somatic tissue
- hypomethylated in normal testis tissue

The effect of epigenetic sperm abnormalities on early

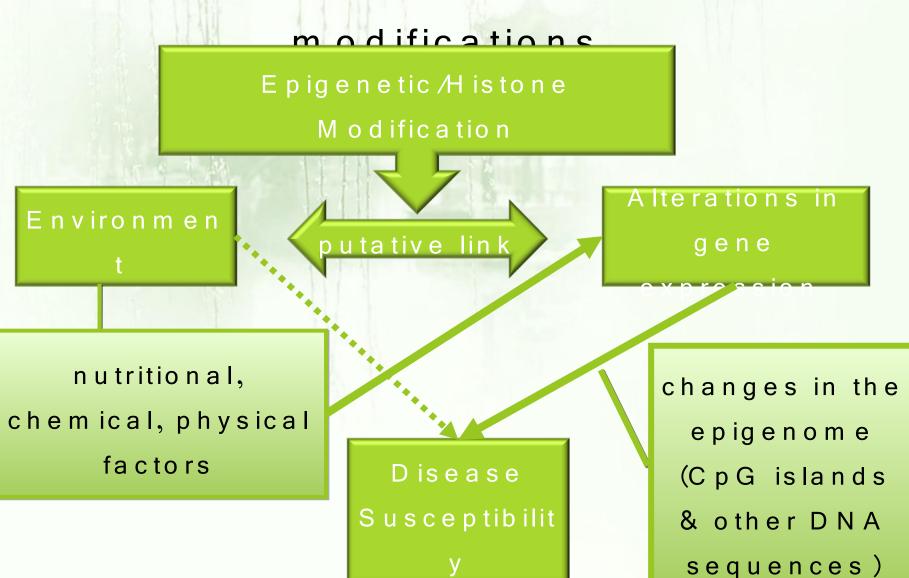
em bryogenesis

- ART \rightarrow \uparrow the risk of imprinting diseases
- In oligospermic men, ↑ Abnormal methylation of the H 19 gene ⇔ Beckwith -Wiedemann syndrome
- $\sqrt{\text{Genome-wide methylation pattern in sperm (ex.:}}$ 5-methyl-cytosine immunostaining)
 - Poor em bryo quality in rats
 - In normospermic men
 - →Poor pregnancy outcome during IVF
 - Independently affects embryogenesis

- Complex path of sperm production & delicate balance of epigenetic and genetic factors during sperm maturation
- Formation of a mature sperm with the ability to fertilize an oocyte
- → Developing embryo

Epigenetic regulation and nutrition

- 1. Epigenetic program ming:
 - Tightly during fetal development and lactation
- 2. Dietary supplement with a methyl donor during pregnancy → ↑ methylated IAP (Intracisternal-A particles) sequence
- 3. There are many environmental and metabolic factors that can influence patterns of histone acetylation and DNA methylation


- Nutrition during early development
 - Can influence DNA methylation
 - 1 -carbon metabolism is dependent on dietary methyl donors & co-factors (methionine, choline, folic acid, vitamin B-12) \rightarrow critical during development
- Foliate supplementation

 Can prevent epigenetic
 change caused by a decrease in DNMT1 activity
- Maternal behavior

 epigenetic regulation of the gluco-corticoid receptor gene in the hippocampus and determines the stress responses of the offspring

- Methyl-donor-deficient diet in postnatal life
 - Can permanently affect the expression of IGF2
 - Resulting in growth retardation
- Patient with Hyperhomocysteinaemia
 - Accumulation of Sadenosylhomocysteine (an inhibitor of DNA methyltransferases)
 - Diet: affect the DNA methylation status
- The impact of diet, nutrients or drugs on early epigenetic program ming \rightarrow seriously in spermatogenesis

The role of **Environmental**Factors in epigenetic

Monozygotic Twins

- An interesting model for studying the role of environmental factors in epigenetic modifications
 - Epigenetically concordant at birth in most cases
 - Differences (DNA methylation and histone modifications) accumulate with age
 - Greatest in those who had lived together for the smallest amount of time
- This finding underlines the relative importance of environmental factors in addition to intrinsic factors

Future perspectives

- Common diseases ⇔ epigenetic basis ⇔
 medicine
- Knowledge of genetic & epigenetic modifications
 of germ cells necessary for the <u>production of</u>
 <u>functional gametes & overcoming infertility</u>
- Analysis of DNA methylation patterns →
 Categorization of infertile men → A new level of ↓
 fertilization, implantation or pregnancy rates
- In causing disease: Environmental interaction ⇔ genome → modulating to improve human health
- Clinical spectrum \rightarrow Molecular Dx & targeted Tx

THANK YOU FOR LISTENING